

A Review of Astrophysics Experiments on Intense Lasers

Bruce Remington

Lawrence Livermore National Laboratory

41st Annual Meeting of the APS/DPP

The field of "laser astrophysics" is not new, its potential being recognized in the 1960's. Interest has been growing recently with the availability of large laser facilities.

- J.M. Dawson, "On the production of plasma by giant lasers", Phys. Fluids 7, 981 (1964)
- N. Tsuchimori, T Yamanaka, C. Yamanaka, "A simulation of space plasma by laser produced plasma," Jpn. J. Appl. Phys. <u>7</u>, 84 (1968)
- Borovsky*et al.*, Laboratory simulation of unmagnetized SNRs," Ap. J. <u>280</u>, 802 (1984)
- Yu.P. Zakharov, A.M. Orishich et al., SNR collisionless shock experiments with KI-1 laser (1986)
- B.H. Ripin *et al.*, "Laboratory laser-produced astrophysical-like plasmas," Laser and Part. Beams <u>8</u>, 183 (1990)
- J. Grun et al., Sedov-Taylor blast waves and Vishniac instability, Phys. Rev. Lett. 66, 2738 (1991)
- S.J. Rose, "Laser-produced plasma and astrophysics," Laser and Part. Beams 9, 869 (1991)
- H. Takabe, "ICF and supernova explosions," Jpn. Plasma Fusion Res. 69, 1285 (1993)
- R.P. Drake, "Laboratory experiments to simulate the hydrodynamics of supernova remnants and supernovae, J. Geophys. Res.-Space Phys. <u>104</u>, 14505 (1999)
- B.A. Remington *et al.*, "Modeling astrophysical phenomena in the laboratory with intense lasers," Science <u>284</u>, 1488 (1999)

Astrophysics traditionally has been pursued on telescopes peering out into space from the tops of mountains, ...

Keck telescopes on Mauna Kea, Hawaii

Very Large Telescope (VLT) on Cerro Paranal in northern Chile

..., and from telescopes peering even deeper into space from space

A new type of "observatory" is being developed to peer inwards

Telescope data

Grosdidier / NASA image using HST/WFPC2

Microscope data

Grun / NRL image using Pharos laser

Grun et al., Phys. Rev. Lett. <u>66</u>, 2738 (1991)

Sophisticated laser facilities allow us to peer inwards at scaled astrophysical phenomena

Omega laser target chamber

Characteristic spatial scales and time scales in astrophysics are long

Initial interactions of the SN1987A ejecta with its circumstellar ring nebula have been observed

Characteristic spatial scales and time scales in laser experiments are short


```
Typical drive T_r = 200 eV or I_L = 5x10<sup>14</sup> W/cm² gives P_{abl} = 30 Mbar = 30 x 10<sup>12</sup> dyne/cm² = 3 TP 
Newtons 2nd law (P = \rho_a g) gives g = 6 x 10<sup>15</sup> cm/s² = 60 \mum/ns² \sim 10^{13}g<sub>0</sub> for a few nsec
```

- Pressures, shock strengths, and accelerations are large
- Dynamics are fast
- Scale transformations can connect the two regimes:

 (large & slow) ← → (small & fast)

A wide variety of astrophysics phenomena can be investigated with experiments on intense lasers

This talk will be divided into 5 generic areas, with broad applications to astrophysics

Generic area

*Opacities
Radiation flow
*Equation of state
Hydrodynamics
Relativistic plasmas

Application

Cepheid variables
Supernova (SN) Igt crv
Giant planets
SN explosion hydro
Protostellar jets
Gamma-ray bursts

* = "input physics"
vs "output physics"